top of page
—Pngtree—blue minimalistic gradient medical symbol_1066704_edited.jpg

Publication List of Prof. Meng Ni's Group

1. Ni, Meng, et al. "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production." Renewable and Sustainable Energy Reviews 11.3 (2007): 401-425.

https://doi.org/10.1016/j.rser.2005.01.009

 

2. Bello, I. T., Song, Y., Yu, N., Li, Z., Zhao, S., Maradesa, A., ... & Ni, M. (2023). Evaluation of the electrocatalytic performance of a novel nanocomposite cathode material for ceramic fuel cells. Journal of Power Sources, 560, 232722.

https://doi.org/10.1016/j.jpowsour.2023.232722

3. Wang, C., Li, Z., Zhao, S., Xia, L., Zhu, M., Han, M., & Ni, M. (2023). Modelling of an integrated protonic ceramic electrolyzer cell (PCEC) for methanol synthesis. Journal of Power Sources, 559, 232667.

https://doi.org/10.1016/j.jpowsour.2023.232667

 

4. Guo, Z., Wang, Y., Zhao, S., Zhao, T., & Ni, M. (2023). Investigation of battery thermal management system with considering effect of battery aging and nanofluids. International Journal of Heat and Mass Transfer, 202, 123685.

https://doi.org/10.1016/j.ijheatmasstransfer.2022.123685

 

5. Li, Z., Wang, C., Bello, I. T., Guo, M., Yu, N., Zhu, M., & Ni, M. (2023). Direct ammonia protonic ceramic fuel cell: A modelling study based on elementary reaction kinetics. Journal of Power Sources, 556, 232505.

https://doi.org/10.1016/j.jpowsour.2022.232505

 

6. Xie, B., Zhang, H., Huo, W., Wang, R., Zhu, Y., Wu, L., ... & Jiao, K. (2023). Large-scale three-dimensional simulation of proton exchange membrane fuel cell considering detailed water transition mechanism. Applied Energy, 331, 120469.

https://doi.org/10.1016/j.apenergy.2022.120469

 

7. Xiao, G., Sun, A., Liu, H., Ni, M., & Xu, H. (2023). Thermal management of reversible solid oxide cells in the dynamic mode switching. Applied Energy, 331, 120383.

https://doi.org/10.1016/j.apenergy.2022.120383

 

8. Li, Z., He, Q., Wang, C., Yu, N., Bello, I. T., Guo, M., & Ni, M. (2023). Protonic ceramic fuel cells for power-ethylene cogeneration: A modelling study on structural parameters. Energy, 264, 126193.

https://doi.org/10.1016/j.energy.2022.12619

 

9. Guo, Z., Xu, Q., & Ni, M. (2023). A numerical study on the battery thermal management system with mini-channel cold plate considering battery aging effect. Applied Thermal Engineering, 219, 119564.

https://doi.org/10.1016/j.applthermaleng.2022.119564

 

10. Han, Y., Guo, M., Sun, A., Liu, H., Xiao, G., Sun, Y., ... & Xu, H. (2023). Towards feasible temperature management and thermo-mechanical stability of carbon-assisted solid oxide electrolysis cell. Energy Conversion and Management, 276, 116483.

https://doi.org/10.1016/j.enconman.2022.116483

 

11. Guo, Z., Xu, Q., Wang, Y., Zhao, T., & Ni, M. (2023). Battery thermal management system with heat pipe considering battery aging effect. Energy, 263, 126116.

https://doi.org/10.1016/j.energy.2022.126116

 

12. Sun, Y., Qian, T., Zhu, J., Zheng, N., Han, Y., Xiao, G., ... & Xu, H. (2023). Dynamic simulation of a reversible solid oxide cell system for efficient H2 production and power generation. Energy, 263, 125725.

https://doi.org/10.1016/j.energy.2022.125725

 

13. Zhao, S., Liu, T., Dai, Y., Wang, J., Wang, Y., Guo, Z., ... & Ni, M. (2023). Pt/C as a bifunctional ORR/iodide oxidation reaction (IOR) catalyst for Zn-air batteries with unprecedentedly high energy efficiency of 76.5%. Applied Catalysis B: Environmental, 320, 121992.

https://doi.org/10.1016/j.apcatb.2022.121992

 

14. Zhou, S., Xie, G., Hu, H., & Ni, M. (2022). Simulation on water transportation in gas diffusion layer of a PEM fuel cell: Influence of non-uniform PTFE distribution. International Journal of Hydrogen Energy.

https://doi.org/10.1016/j.ijhydene.2022.12.063

 

15. Sun, Y., Hu, X., Gao, J., Han, Y., Sun, A., Zheng, N., ... & Xu, H. (2022). Solid oxide electrolysis cell under real fluctuating power supply with a focus on thermal stress analysis. Energy, 261, 125096.

https://doi.org/10.1016/j.energy.2022.125096

 

16. Pan, W., Ni, M., & Leung, D. Y. (2022). Design of Zn Anode for Zinc–Air Batteries. Zinc‐Air Batteries: Introduction, Design Principles and Emerging Technologies, 155-184.

https://doi.org/10.1002/9783527837939.ch5

 

17. Liu, T., Zhao, S., Xiong, Q., Yu, J., Wang, J., Huang, G., ... & Zhang, X. (2022). Reversible Discharge Products in Li− Air Batteries. Advanced Materials, 2208925.

https://doi.org/10.1002/adma.202208925

 

18. Deng, S., Zhang, J., Zhang, C., Luo, M., Ni, M., Li, Y., & Zeng, T. (2022). Prediction and optimization of gas distribution quality for high-temperature PEMFC based on data-driven surrogate model. Applied Energy, 327, 120000.

https://doi.org/10.1016/j.apenergy.2022.120000

 

19. Zhao, S., Liu, T., Wang, Y., Guo, Z., Bello, I. T., He, Q., ... & Ni, M. (2022). Innovating Rechargeable Zn-Air Batteries for Low Charging Voltage and High Energy Efficiency. Energy & Fuels.

https://doi.org/10.1021/acs.energyfuels.2c04025

 

20. Cheng, C., Wang, S., Wu, Y., Liu, T., Feng, S. P., & Ni, M. (2022). pH-sensitive thermally regenerative cell (pH-TRC) with circulating hydrogen for long discharging time and high-power output. Chemical Engineering Journal, 449, 137772.

https://doi.org/10.1016/j.cej.2022.137772

 

21. Zhao, D., Xia, Z., Guo, M., He, Q., Xu, Q., Li, X., & Ni, M. (2022). Capacity optimization and energy dispatch strategy of hybrid energy storage system based on proton exchange membrane electrolyzer cell. Energy Conversion and Management, 272, 116366.

https://doi.org/10.1016/j.enconman.2022.116366

 

22. Guo, M., Zhao, D., Xu, Q., Li, Z., Xu, H., & Ni, M. (2022). New interconnector design optimization to balance electrical and mechanical performance of solid oxide fuel cell stack. International Journal of Hydrogen Energy.

https://doi.org/10.1016/j.ijhydene.2022.10.147

 

23. Sun, A., Shuai, W., Zheng, N., Han, Y., Xiao, G., Ni, M., & Xu, H. (2022). Self-adaptive heat management of solid oxide electrolyzer cell under fluctuating power supply. Energy Conversion and Management, 271, 116310.

https://doi.org/10.1016/j.enconman.2022.116310

 

24. Ma, Z., Ye, Q., Zhang, B., Yang, W., Dong, F., Ni, M., & Lin, Z. (2022). A Highly Efficient and Robust Bifunctional Perovskite‐Type Air Electrode with Triple‐Conducting Behavior for Low‐Temperature Solid Oxide Fuel Cells. Advanced Functional Materials, 32(47), 2209054.

https://doi.org/10.1002/adfm.202209054

 

25. Zhang, H., Gao, Y., Xu, H., Guan, D., Hu, Z., Jing, C., ... & Shao, Z. (2022). Combined Corner‐Sharing and Edge‐Sharing Networks in Hybrid Nanocomposite with Unusual Lattice‐Oxygen Activation for Efficient Water Oxidation. Advanced Functional Materials, 32(45), 2207618.

https://doi.org/10.1002/adfm.202207618

 

26. Gong, Z., Wang, B., Xu, Y., Ni, M., Gao, Q., Hou, Z., ... & Jiao, K. (2022). Adaptive optimization strategy of air supply for automotive polymer electrolyte membrane fuel cell in life cycle. Applied Energy, 325, 119839.

https://doi.org/10.1016/j.apenergy.2022.119839

 

27. Shafiei Kaleibari, S., Ye, Q., & Ni, M. (2022). Towards the high energy density batteries via fluoride ions shuttling in liquid electrolytes: A review. International Journal of Energy Research, 46(13), 17848-17872.

https://doi.org/10.1002/er.8468

 

28. Wang, Y., Wu, C., Zhao, S., Guo, Z., Zu, B., Han, M., ... & Jiao, K. (2022). Assessing performance degradation induced by thermal cycling in solid oxide cells. Energy Conversion and Management, 270, 116239.

https://doi.org/10.1016/j.enconman.2022.116239

 

29. Zhao, D., Guo, M., He, Q., Yu, J., Xu, Q., Xia, Z., ... & Ni, M. (2022). System level modeling and optimization of high temperature proton exchange membrane electrolyzer system considering recirculated hydrogen as carrier gas. International Journal of Energy Research, 46(12), 17590-17601.

https://doi.org/10.1002/er.8426

 

30. Xia, L., Tao, S., Ni, M., Wang, Y., Wu, C., Xu, Q., ... & Cheng, C. (2022). Reconstruction and optimization of catalyst layer of high temperature proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 47(84), 35778-35789.

https://doi.org/10.1016/j.ijhydene.2022.08.136

31. Bello, I. T., Yu, N., Song, Y., Wang, J., Chan, T. S., Zhao, S., ... & Ni, M. (2022). Electrokinetic Insights into the Triple Ionic and Electronic Conductivity of a Novel Nanocomposite Functional Material for Protonic Ceramic Fuel Cells. Small, 18(40), 2203207.

https://doi.org/10.1002/smll.202203207

 

32. Wan, R., & Ni, M. (2022). Energy-water-climate governance from interdisciplinary perspectives. Environmental Science and Pollution Research, 29(48), 72087-72089.

https://doi.org/10.1007/s11356-022-22455-5

 

33. Wang, C., Li, Z., He, Q., Zhu, M., & Ni, M. (2022). Effect of Interconnector Rib on Optimization of SOFC Structural Parameters. Journal of The Electrochemical Society, 169(9), 094511.

https://doi.org/10.1149/1945-7111/ac911d

 

34. Yu, J., Dai, Y., Zhang, Z., Liu, T., Zhao, S., He, Q., ... & Ni, M. (2022). New nitrogen-doped graphitic carbon nanosheets with rich structural defects and hierarchical nanopores as efficient metal-free electrocatalysts for oxygen reduction reaction in Zn-Air batteries. Chemical Engineering Science, 259, 117816.

https://doi.org/10.1016/j.ces.2022.117816

 

35. Guo, M., Ru, X., Yang, L., Ni, M., & Lin, Z. (2022). Effects of methane steam reforming on the mechanical stability of solid oxide fuel cell stack. Applied Energy, 322, 119464.

https://doi.org/10.1016/j.apenergy.2022.119464

 

36. Zhai, S., Xie, H., Cui, P., Guan, D., Wang, J., Zhao, S., ... & Ni, M. (2022). A combined ionic Lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells. Nature Energy, 7(9), 866-875.

https://doi.org/10.1038/s41560-022-01098-3

 

37. Wang, B., Ni, M., & Jiao, K. (2022). Green ammonia as a fuel. Science bulletin, 67(15), 1530-1534.

https://doi.org/10.1016/j.scib.2022.06.023

 

38. Xu, Q., Guo, M., Xia, L., Li, Z., He, Q., Zhao, D., ... & Ni, M. (2022). Temperature gradient analyses of a tubular solid oxide fuel cell fueled by methanol. Transactions of Tianjin University, 1-17.

https://doi.org/10.1007/s12209-022-00331-0

 

39. Han, Y., Zhang, H., Xie, G., & Ni, M. (2022). Performance potential of a new molten hydroxide direct carbon fuel cell–based triple‐cycle system for clean and efficient coal use. International Journal of Energy Research, 46(10), 14491-14504.

https://doi.org/10.1002/er.8176

 

40. Sun, Y., Zheng, W., Ji, S., Sun, A., Shuai, W., Zheng, N., ... & Xu, H. (2022). Dynamic behavior of high-temperature CO2/H2O co-electrolysis coupled with real fluctuating renewable power. Sustainable Energy Technologies and Assessments, 52, 102344.

https://doi.org/10.1016/j.seta.2022.102344

 

41. Bello, I. T., Yu, N., Zhai, S., Song, Y., Zhao, S., Cheng, C., ... & Ni, M. (2022). Effect of engineered lattice contraction and expansion on the performance and CO2 tolerance of Ba0. 5Sr0. 5Co0. 7Fe0. 3O3-δ functional material for intermediate temperature solid oxide fuel cells. Ceramics International, 48(15), 21457-21468.

https://doi.org/10.1016/j.ceramint.2022.04.110

 

42. Zhao, S., Liu, T., Wang, J., Bello, I. T., Zuo, Y., Wei, M., ... & Ni, M. (2022). Anti-CO2 strategies for extending Zinc-Air Batteries’ Lifetime: A review. Chemical Engineering Journal, 138207.

https://doi.org/10.1016/j.cej.2022.138207

 

43. Li, Z., He, Q., Wang, C., Xu, Q., Guo, M., Bello, I. T., & Ni, M. (2022). Ethylene and power cogeneration from proton ceramic fuel cells (PCFC): A thermo-electrochemical modelling study. Journal of Power Sources, 536, 231503.

https://doi.org/10.1016/j.jpowsour.2022.231503

 

44. Zhao, D., He, Q., Wu, X., Xu, Y., Jiang, J., Li, X., & Ni, M. (2022). Modeling and optimization of high temperature proton exchange membrane electrolyzer cells. International Journal of Green Energy, 19(9), 919-930.

https://doi.org/10.1080/15435075.2021.1974450

 

45. Yu, J., Dai, Y., Zhang, Z., Liu, T., Zhao, S., Cheng, C., ... & Ni, M. (2022). Tailoring structural properties of carbon via implanting optimal co nanoparticles in n‐rich carbon cages toward high‐efficiency oxygen electrocatalysis for rechargeable zn‐air batteries. Carbon Energy, 4(4), 576-585.

https://doi.org/10.1002/cey2.171

 

46. Zhao, D., Xia, Z., Guo, M., He, Q., Xu, Q., Li, X., & Ni, M. (2022). Dynamic hierarchical modeling and control strategy of high temperature proton exchange electrolyzer cell system. International Journal of Hydrogen Energy, 47(53), 22302-22315.

https://doi.org/10.1016/j.ijhydene.2022.05.067

47. Cui, T., Lyu, Z., Han, M., Sun, K., Liu, Y., & Ni, M. (2022). Performance evolution analysis of a solid oxide cell operated in fuel-cell, electrolysis and cycle modes. Energy Conversion and Management, 262, 115657.

https://doi.org/10.1016/j.enconman.2022.115657

 

48. Guo, M., He, Q., Cheng, C., Zhao, D., & Ni, M. (2022). New interconnector designs for electrical performance enhancement of solid oxide fuel cells: A 3D modelling study. Journal of Power Sources, 533, 231373.

https://doi.org/10.1016/j.jpowsour.2022.231373

 

49. Yu, N., Liu, T., Chen, X., Miao, M., Ni, M., & Wang, Y. (2022). Co-generation of liquid chemicals and electricity over Co-Fe alloy/perovskite anode catalyst in a propane fueled solid oxide fuel cell. Separation and Purification Technology, 291, 120890.

https://doi.org/10.1016/j.seppur.2022.120890

 

50. Xie, B., Ni, M., Zhang, G., Sheng, X., Tang, H., Xu, Y., ... & Jiao, K. (2022). Validation methodology for PEM fuel cell three-dimensional simulation. International Journal of Heat and Mass Transfer, 189, 122705.

https://doi.org/10.1016/j.ijheatmasstransfer.2022.122705

 

51. Dong, F., Ma, Z., Ye, Q., Zhang, B., Li, L., Yang, G., ... & Lin, Z. (2022). Structural Engineering of Cobalt‐Free Perovskite Enables Efficient and Durable Oxygen Reduction in Solid Oxide Fuel Cells. Small Methods, 6(6), 2200292.

https://doi.org/10.1002/smtd.202200292

 

52. Uddin, M. N., Chi, H. L., Wei, H. H., Lee, M., & Ni, M. (2022). Influence of interior layouts on occupant energy-saving behaviour in buildings: An integrated approach using Agent-Based Modelling, System Dynamics and Building Information Modelling. Renewable and Sustainable Energy Reviews, 161, 112382.

https://doi.org/10.1016/j.rser.2022.112382

 

53. Wang, Y., Wu, C., Zhao, S., Wang, J., Zu, B., Han, M., ... & Jiao, K. (2022). Coupling deep learning and multi-objective genetic algorithms to achieve high performance and durability of direct internal reforming solid oxide fuel cell. Applied Energy, 315, 119046.

https://doi.org/10.1016/j.apenergy.2022.119046

 

54. Dai, Y., Yu, J., Wang, J., Shao, Z., Guan, D., Huang, Y. C., & Ni, M. (2022). Bridging the charge accumulation and high reaction order for high‐rate oxygen evolution and long stable Zn‐air batteries. Advanced Functional Materials, 32(24), 2111989.

https://doi.org/10.1002/adfm.202111989

 

55. Guo, Z., Xu, Q., Zhao, S., Zhai, S., Zhao, T., & Ni, M. (2022). A new battery thermal management system employing the mini-channel cold plate with pin fins. Sustainable Energy Technologies and Assessments, 51, 101993.

https://doi.org/10.1016/j.seta.2022.101993

 

56. Lingchao, X., Caizhi, Z., Chen, J., Chen, L., Ni, M., Bo, D., & Jiangfeng, X. (2022). Numerical study of vapor behavior in high temperature PEM fuel cell under key material and operating parameters. International Journal of Green Energy, 19(7), 707-718.

https://doi.org/10.1080/15435075.2021.1960354

 

57. Zhang, C., Zhang, J., Liu, Q., Cai, L., Ni, M., Zeng, T., & Liang, C. (2022). Modeling and analysis of water vapor dynamics in high-temperature proton exchange membrane fuel cell coupling gas-crossover phenomena. International Journal of Hydrogen Energy, 47(42), 18504-18517.

https://doi.org/10.1016/j.ijhydene.2022.04.001

 

58. Wu, C., Wang, Y., Hou, Y., Li, X., Peng, Z., Du, Q., ... & Jiao, K. (2022). Reconstruction and optimization of LSCF cathode microstructure based on Kinetic Monte Carlo method and Lattice Boltzmann method. Chemical Engineering Journal, 436, 132144.

https://doi.org/10.1016/j.cej.2021.132144

 

59. Uddin, M. N., Wei, H. H., Chi, H. L., Ni, M., & Tamanna, N. (2022). Building Layout Influence on Occupant’s Energy Consumption Behaviour: An Agent-Based Modeling Approach. Environmental Sciences Proceedings, 15(1), 22.

https://doi.org/10.3390/environsciproc2022015022

 

60. Wang, C., He, Q., Li, Z., Xu, Q., Han, M., & Ni, M. (2022). Modelling of solid oxide fuel cells with internal glycerol steam reforming. International Journal of Hydrogen Energy, 47(33), 15012-15023.

https://doi.org/10.1016/j.ijhydene.2022.03.001

 

61. Sun, Y., Lu, J., Liu, Q., Shuai, W., Sun, A., Zheng, N., ... & Xu, H. (2022). Multi-objective optimizations of solid oxide co-electrolysis with intermittent renewable power supply via multi-physics simulation and deep learning strategy. Energy Conversion and Management, 258, 115560.

https://doi.org/10.1016/j.enconman.2022.115560

 

62. Guo, Z., Zhao, S., Wang, J., Wang, Y., Zhai, S., Zhao, T., & Ni, M. (2022). Novel battery thermal management system with different shapes of pin fins. International Journal of Energy Research, 46(5), 5997-6011.

https://doi.org/10.1002/er.7539

 

63. Dai, Y., Yu, J., Tan, P., Cheng, C., Liu, T., Zhao, S., ... & Ni, M. (2022). Microscale-decoupled charge-discharge reaction sites for an air electrode with abundant triple-phase boundary and enhanced cycle stability of Zn-Air batteries. Journal of Power Sources, 525, 231108.

https://doi.org/10.1016/j.jpowsour.2022.231108

 

64. Guan, D., Zhong, J., Xu, H., Huang, Y. C., Hu, Z., Chen, B., ... & Shao, Z. (2022). A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides. Applied Physics Reviews, 9(1), 011422.

https://doi.org/10.1063/5.0083059

 

65. Bello, I. T., Zhai, S., He, Q., Cheng, C., Dai, Y., Chen, B., ... & Ni, M. (2022). Materials development and prospective for protonic ceramic fuel cells. International Journal of Energy Research, 46(3), 2212-2240.

https://doi.org/10.1002/er.7371

 

66. Liao, T., Xu, Q., Dai, Y., Cheng, C., He, Q., & Ni, M. (2022). Radiative cooling-assisted thermoelectric refrigeration and power systems: Coupling properties and parametric optimization. Energy, 242, 122546.

https://doi.org/10.1016/j.energy.2021.122546

 

67. Zhao, D., He, Q., Yu, J., Guo, M., Fu, J., Li, X., & Ni, M. (2022). A data-driven digital-twin model and control of high temperature proton exchange membrane electrolyzer cells. International Journal of Hydrogen Energy, 47(14), 8687-8699.

https://doi.org/10.1016/j.ijhydene.2021.12.233

 

68. Shang, W., Yu, W., Xiao, X., Ma, Y., Chen, Z., Ni, M., & Tan, P. (2022). Optimizing the charging protocol to address the self-discharge issues in rechargeable alkaline Zn-Co batteries. Applied Energy, 308, 118366.

https://doi.org/10.1016/j.apenergy.2021.118366

 

69. Zhao, S., Liu, T., Dai, Y., Wang, Y., Guo, Z., Zhai, S., ... & Ni, M. (2022). All-in-one and bipolar-membrane-free acid-alkaline hydrogel electrolytes for flexible high-voltage Zn-air batteries. Chemical Engineering Journal, 430, 132718.

https://doi.org/10.1016/j.cej.2021.132718

 

70. Zhai, S., Xie, H., Chen, B., & Ni, M. (2022). A rational design of FeNi alloy nanoparticles and carbonate-decorated perovskite as a highly active and coke-resistant anode for solid oxide fuel cells. Chemical Engineering Journal, 430, 132615.

https://doi.org/10.1016/j.cej.2021.132615

 

71. Xu, Q., Guo, Z., Xia, L., He, Q., Li, Z., Bello, I. T., ... & Ni, M. (2022). A comprehensive review of solid oxide fuel cells operating on various promising alternative fuels. Energy Conversion and Management, 253, 115175.

https://doi.org/10.1016/j.enconman.2021.115175

 

72. Liu, T., Zhao, S., Wang, Y., Yu, J., Dai, Y., Wang, J., ... & Ni, M. (2022). In Situ Anchoring Co–N–C Nanoparticles on Co4N Nanosheets toward Ultrastable Flexible Self‐Supported Bifunctional Oxygen Electrocatalyst Enables Recyclable Zn–Air Batteries Over 10 000 Cycles and Fast Charging. Small, 18(7), 2105887.

https://doi.org/10.1002/smll.202105887

 

73. Leong, K. W., Wang, Y., Ni, M., Pan, W., Luo, S., & Leung, D. Y. (2022). Rechargeable Zn-air batteries: Recent trends and future perspectives. Renewable and Sustainable Energy Reviews, 154, 111771.

https://doi.org/10.1016/j.rser.2021.111771

 

74. Xia, L., Ni, M., Dai, Y., Zheng, K., & Li, M. (2022). Numerical study of triple‐phase boundary length in high‐temperature proton exchange membrane fuel cell. International Journal of Energy Research, 46(2), 1998-2010.

https://doi.org/10.1002/er.7223

 

75. Li, Z., He, Q., Xia, L., Xu, Q., Cheng, C., Wang, J., & Ni, M. (2022). Effects of cathode thickness and microstructural properties on the performance of protonic ceramic fuel cell (PCFC): A 3D modelling study. International Journal of Hydrogen Energy, 47(6), 4047-4061.

https://doi.org/10.1016/j.ijhydene.2021.11.022

 

76. He, W., Fan, Z., Huang, Z., Liu, X., Qian, J., Ni, M., ... & Sun, Z. (2022). A Li+ and PANI co-intercalation strategy for hydrated V 2 O 5 to enhance zinc ion storage performance. Journal of Materials Chemistry A, 10(36), 18962-18971.

https://doi.org/10.1039/D2TA03145K

 

77. He, Y., Shang, W., Ni, M., Huang, Y., Zhao, H., & Tan, P. (2022). In-situ observation of the gas evolution process on the air electrode of Zn-air batteries during charging. Chemical Engineering Journal, 427, 130862.

https://doi.org/10.1016/j.cej.2021.130862

bottom of page